Non-Contact control and damage diagnosis in concrete elements using Laser Scanning Vibrometry (LSV) method

Evangelos Liarakos
Postdoctoral researcher
w: eliarakos.wordpress.com

Costas Providakis
Professor, Technical University of Crete
w: http://users.isc.tuc.gr/~kprovidakis/
This presentation is distributed by author Evangelos V. Liarakos, under a Creative Common License and the following terms must be fulfilled:

Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Non Commercial: You may not use the material for commercial purposes.

Share Alike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
Outline of presentation

1. Concrete Non-Destructive Testing (NDT)
2. Non-Contact and Remote NDT
3. Laser Scanning Vibrometry (LSV) and NDT
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring
5. Conclusions – Discussion
1. Concrete Non-Destructive Testing (NDT)

- **Non invasive** methods for the estimation of materials and construction physical and mechanical properties
- **Avoidance** of material sampling and specimens fabricating
- No need of laboratorial testing for material strength measuring
- Saving cost concerning specimens and material samples transportation, storage and conservation
- **In-Situ** estimation of mechanical and physical properties
- **Time efficient** and detailed inspection of a construction
- New technologies that adopt low cost sensors combined with portable and easy programmable electronics, allow the **installation of permanent** structural integrity monitoring systems (Smart Monitoring Grids)

Liarakos E., Providakis K.
Applied Mechanics Lab
Technical University of Crete
1. Concrete Non-Destructive Testing (NDT)

- Concrete control.
 - **Young Modulus Estimation**: Measurement of P-Waves (longitudinal) velocity (Ultrasonic method)
 - **Estimation of mechanical parameters – Structural Features**: (Young Modulus, Poisson Ratio, Local Stiffness, Damping etc.): Monitoring and acquisition of constructions’ response to impact excitation (Impact-Echo Methods, Dynamic Response monitoring)
 - **Compressive strength estimation**: Combination of Ultrasonic velocity measurement with empirical equations
 - **Crack depth estimation**: Exploiting surface wave propagation
1. Concrete Non-Destructive Testing (NDT)

• Construction dynamic response monitoring. Ordinarily in time domain – Signals Acquisition (Velocimeters, Accelerometers, Strain gauges etc.)

 Signal j-th value: $f_j, j=1:N$, $t_j=t_0+dt(j-1)$, Sampling frequency $FS=1/dt$

• Frequency Response Spectrum calculation – Fast Fourier Transform

$$F(\omega_k) = \frac{2}{FS} \sum_{j=1}^{N} f_j \exp(i \omega_k t_j), \quad \omega_k = \frac{2\pi}{Ndt} (k-1), \quad k = 1: N/2$$

• Dynamic features determination (Resonant frequencies and respective amplitudes, Eigenmodes etc.)

• Dynamic features are strongly physically correlated with structural and material properties (Stiffness, Damping-Mechanical Loss Factor and modal masses).
1. Concrete Non-Destructive Testing (NDT)

 - **If a damage occurs**, structural parameters will change and this change **will be imprinted at Frequency Response Spectra**.

![Frequency Response Spectrum](image)

- **Digital Oscilloscope – DAQ**
- **AMEL Teflon Piezoelectric sensor**
- **Impact point**
- **Artificial Damages**
- **Undamaged concrete member**

Liarakos E., Providakis K.
Applied Mechanics Lab
Technical University of Crete
2. Non-Contact and Remote NDT

- The majority of widespread NDT methods demand physical contact with monitoring structure
 - Preparation of construction surfaces (e.g. cleaning)
 - Sensors installation (e.g. Adhesive based attachment on constructions’ surfaces)
- Restricted access to monitoring structure's space
 - Bridges decks, Dam surfaces etc.
 - Concrete beams
- Access denied
 - Moving machine elements - High pressure and temperature operation
 - Monuments, Historical Constructions
 - Sculptures, Frescoes, Fine arts elements
3. Laser Scanning Vibrometry (LSV) and NDT

- Measuring the velocity of a vibrating construction’s point by exploiting the frequency shifting Δf_r, a Laser beam undergoes, due to Doppler effect.

\[V = \frac{1}{2} \lambda \Delta f_r = \frac{1}{2} \lambda (f_{r_2} - f_{r_0}) \]

- Single Degree of Freedom Oscillator (Simulation of point dynamic response)
3. Laser Scanning Vibrometry (LSV) and NDT

- Surface **multi-point measuring** of constructional member vibration velocity – Data acquisition in time domain (Velocity Signals)
- Calculation of Fourier spectrum for each point of monitoring mesh
- Vibration modes mapping – Construction's dynamic features calculation

![Diagram of Laser Scanning Vibrometry](image)

Resonant Frequencies

Velocity Fourier spectrum on a specific scanning point

Mapping of dynamic response for each frequency point of scanning range

Liarakos E., Providakis K.

Applied Mechanics Lab
Technical University of Crete
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- Portable laser head and processing unit.
- 1D vibration’s velocity measuring.
- Embedded data acquisition system.
- Bandwidth: 0 Hz-100 kHz.
- Max sampling frequency: 250 kHz.
- Max FFT points: 12800.
- Vibration amplitudes range: 1 mm/s – 10 m/s.
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- **Aims of experimental procedure**

 - Concrete dynamic response monitoring and damage diagnosis using LSV method
 - Scalar tensile failure
 - 3-point bending – Flexural test of concrete beam
 - 2 Loading-Unloading Cycles
 - Loading rate 0.5 (kN/s)
 - Steel fiber reinforced concrete
 - C20/25, 3 months age
 - Bending Length, 450 mm
 - Beam dims: 750x150x90 mm
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

Aims of experimental procedure

- Examined Damage States
 - **Undamaged State**: Intact beam
 - **Damage State 1**: Initial tensile crack (Approx. at 12-15 kN) 1\(^{\text{st}}\) Loading Cycle
 - **Damage State 2**: Total collapse of concrete* (Approx. at 4-6 kN) 2\(^{\text{nd}}\) Loading Cycle

* Beam macro-geometric continuity is retained only due to steel fiber activation

- [Intact Beam Image]
- [Tensile Crack Image]
- [Damage State 2 Image]
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- Experimental set-up and procedure

![Experimental set-up and procedure diagram](image)
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- 125 scanning points, monitoring mesh
- Mechanical Vibration Actuator – Shaker LDS-V101 (Bruel & Kjaer)
- Frequency Generator. Harmonic excitation at 150, 200, 300, 350, 500 and 600 (Hz). **Perpendicular to bending plane direction.**
- Velocity signal Acquiring $F_S=3125$ (Hz)
- Number of FFT points: 800
- Range of Fourier Frequencies 100-1550 (Hz)
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- Vibration mapping: 2D polynomial regression of spectral velocity
- Efficient illustration of vibration modes using a relative small number of scanning points
- Estimation of vibration velocity distribution on non-scanned areas (technical restrictions)

Liarakos Ε., Providakis Κ.

Applied Mechanics Lab
Technical University of Crete
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

Scanning Results

- Spectral velocity distribution after polynomial regression for excitation frequencies 150 and 200 Hz.
- No significant changes of vibrations patterns among the different damage states.

Liarakos Ε., Providakis Κ.
Applied Mechanics Lab
Technical University of Crete
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- **Scanning Results**
 - Spectral velocity distribution after polynomial regression for excitation frequency 300 Hz.
 - Detectable changes of vibrations patterns among the different damage states.
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

- **Scanning Results**
 - Spectral velocity distribution after polynomial regression for excitation frequency 500 Hz.
 - **Significant changes of vibrations patterns among the different damage states**

![Velocity response colormap at 500Hz for fr_exo = 500Hz](image)

Liarakos E., Providakis K.
Applied Mechanics Lab
Technical University of Crete
4. Application of LSV for Concrete beam tensile crack diagnosis and damage state monitoring

Scanning Results

- Spectral velocity distribution after polynomial regression for excitation frequency 600 Hz.
- Significant changes of vibrations patterns among the different damage states

![Velocity response colormap at 600Hz for fr_{exo}=600Hz](image)

![Average spectrum for all scanning points - 600 Hz excitation](image)
5. Conclusions – Discussion

- **Laser Scanning Vibrometry** based measurement of vibration velocity, exploiting the Doppler effect a Laser beam undergoes, can be manipulated for the establishment of a Dynamic Motion based Non-Destructive Method for the **non-contact** and **remote** monitoring of concrete structures.

- Laser Scanning Vibrometry (LSV) **allows multipoint measuring of constructions’ dynamic response**, contributing to the structural members vibration mode mapping (Surficial Experimental Modal Analysis).
5. Conclusions – Discussion

- Application of LSV method
 - Monitoring of vibration patterns among different damage states
 - Detection of changes in concrete dynamic response because of damage generation
 - Localization of damage position

- Proposed methodology can also implemented for the dynamic monitoring and damage diagnosis of several brittle/rock materials built constructions like masonries, sculptures, frescoes, Mosaics and historical buildings from stones (e.g. temples)
5. Conclusions – Discussion

- AMEL Current Research Activity on LSV based NDT
 - Damage mapping in concrete layered walls
5. Conclusions – Discussion

- AMEL Current Research Activity on LSV based NDT
 - Damage diagnosis in historic masonries
Acknowledgments

Present project and related research work have been funded by Technical University of Crete’s Special Research Fund Account as postdoctoral research (Oct. 2016 - Sep. 2017).